Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
1.
Math Biosci Eng ; 20(5): 8875-8891, 2023 03 09.
Article in English | MEDLINE | ID: covidwho-2287882

ABSTRACT

Knowledge of viral shedding remains limited. Repeated measurement data have been rarely used to explore the influencing factors. In this study, a joint model was developed to explore and validate the factors influencing the duration of viral shedding based on longitudinal data and survival data. We divided 361 patients infected with Delta variant hospitalized in Nanjing Second Hospital into two groups (≤ 21 days group and > 21 days group) according to the duration of viral shedding, and compared their baseline characteristics. Correlation analysis was performed to identify the factors influencing the duration of viral shedding. Further, a joint model was established based on longitudinal data and survival data, and the Markov chain Monte Carlo algorithm was used to explain the influencing factors. In correlation analysis, patients having received vaccination had a higher antibody level at admission than unvaccinated patients, and with the increase of antibody level, the duration of viral shedding shortened. The linear mixed-effects model showed the longitudinal variation of logSARS-COV-2 IgM sample/cutoff (S/CO) values, with a parameter estimate of 0.193 and a standard error of 0.017. Considering gender as an influencing factor, the parameter estimate of the Cox model and their standard error were 0.205 and 0.1093 (P = 0.608), the corresponding OR value was 1.228. The joint model output showed that SARS-COV-2 IgM (S/CO) level was strongly associated with the risk of a composite event at the 95% confidence level, and a doubling of SARS-COV-2 IgM (S/CO) level was associated with a 1.38-fold (95% CI: [1.16, 1.72]) increase in the risk of viral non-shedding. A higher antibody level in vaccinated patients, as well as the presence of IgM antibodies in serum, can accelerate shedding of the mutant virus. This study provides some evidence support for vaccine prevention and control of COVID-19 variants.


Subject(s)
COVID-19 , Humans , SARS-CoV-2 , Virus Shedding , Immunoglobulin M
2.
Ann Clin Microbiol Antimicrob ; 22(1): 22, 2023 Mar 21.
Article in English | MEDLINE | ID: covidwho-2267807

ABSTRACT

BACKGROUND: Chest computerized tomography (CT) scan is an important strategy that quantifies the severity of COVID-19 pneumonia. To what extent inactivated COVID-19 vaccines could impact the COVID-19 pneumonia on chest CT is not clear. METHODS: This study recruited 357 SARS-COV-2 B.1.617.2 (Delta) variant-infected patients admitted to the Second Hospital of Nanjing from July to August 2021. An artificial intelligence-assisted CT imaging system was used to quantify the severity of COVID-19 pneumonia. We compared the volume of infection (VOI), percentage of infection (POI) and chest CT scores among patients with different vaccination statuses. RESULTS: Of the 357 Delta variant-infected patients included for analysis, 105 were unvaccinated, 72 were partially vaccinated and 180 were fully vaccinated. Fully vaccination had the least lung injuries when quantified by VOI (median VOI of 222.4 cm3, 126.6 cm3 and 39.9 cm3 in unvaccinated, partially vaccinated and fully vaccinated, respectively; p < 0.001), POI (median POI of 7.60%, 3.55% and 1.20% in unvaccinated, partially vaccinated and fully vaccinated, respectively; p < 0.001) and chest CT scores (median CT score of 8.00, 6.00 and 4.00 in unvaccinated, partially vaccinated and fully vaccinated, respectively; p < 0.001). After adjustment for age, sex, comorbidity, time from illness onset to hospitalization and viral load, fully vaccination but not partial vaccination was significantly associated with less lung injuries quantified by VOI {adjust coefficient[95%CI] for "full vaccination": - 106.10(- 167.30,44.89); p < 0.001}, POI {adjust coefficient[95%CI] for "full vaccination": - 3.88(- 5.96, - 1.79); p = 0.001} and chest CT scores {adjust coefficient[95%CI] for "full vaccination": - 1.81(- 2.72, - 0.91); p < 0.001}. The extent of reduction of pulmonary injuries was more profound in fully vaccinated patients with older age, having underlying diseases, and being female sex, as demonstrated by relatively larger absolute values of adjusted coefficients. Finally, even within the non-severe COVID-19 population, fully vaccinated patients were found to have less lung injuries. CONCLUSION: Fully vaccination but not partially vaccination could significantly protect lung injury manifested on chest CT. Our study provides additional evidence to encourage a full course of vaccination.


Subject(s)
COVID-19 Vaccines , COVID-19 , Lung Injury , Female , Humans , Male , Artificial Intelligence , COVID-19/prevention & control , COVID-19 Vaccines/adverse effects , Lung Injury/diagnostic imaging , SARS-CoV-2
3.
Nature ; 612(7940): 477-482, 2022 12.
Article in English | MEDLINE | ID: covidwho-2160238

ABSTRACT

Atmospheric methane growth reached an exceptionally high rate of 15.1 ± 0.4 parts per billion per year in 2020 despite a probable decrease in anthropogenic methane emissions during COVID-19 lockdowns1. Here we quantify changes in methane sources and in its atmospheric sink in 2020 compared with 2019. We find that, globally, total anthropogenic emissions decreased by 1.2 ± 0.1 teragrams of methane per year (Tg CH4 yr-1), fire emissions decreased by 6.5 ± 0.1 Tg CH4 yr-1 and wetland emissions increased by 6.0 ± 2.3 Tg CH4 yr-1. Tropospheric OH concentration decreased by 1.6 ± 0.2 per cent relative to 2019, mainly as a result of lower anthropogenic nitrogen oxide (NOx) emissions and associated lower free tropospheric ozone during pandemic lockdowns2. From atmospheric inversions, we also infer that global net emissions increased by 6.9 ± 2.1 Tg CH4 yr-1 in 2020 relative to 2019, and global methane removal from reaction with OH decreased by 7.5 ± 0.8 Tg CH4 yr-1. Therefore, we attribute the methane growth rate anomaly in 2020 relative to 2019 to lower OH sink (53 ± 10 per cent) and higher natural emissions (47 ± 16 per cent), mostly from wetlands. In line with previous findings3,4, our results imply that wetland methane emissions are sensitive to a warmer and wetter climate and could act as a positive feedback mechanism in the future. Our study also suggests that nitrogen oxide emission trends need to be taken into account when implementing the global anthropogenic methane emissions reduction pledge5.


Subject(s)
Atmosphere , Methane , Wetlands , Humans , Communicable Disease Control/statistics & numerical data , COVID-19/epidemiology , Methane/analysis , Ozone/analysis , Atmosphere/chemistry , Human Activities/statistics & numerical data , Time Factors , History, 21st Century , Temperature , Humidity , Nitrogen Oxides/analysis
4.
Int J Mol Sci ; 23(23)2022 Nov 26.
Article in English | MEDLINE | ID: covidwho-2123707

ABSTRACT

To explore the mechanistic origin that determines the binding affinity of SARS-CoV-2 spike receptor binding domain (RBD) to human angiotensin converting enzyme 2 (ACE2), we constructed the homology models of RBD-ACE2 complexes of four Omicron subvariants (BA.1, BA.2, BA.3 and BA.4/5), and compared them with wild type complex (RBDWT-ACE2) in terms of various structural dynamic properties by molecular dynamics (MD) simulations and binding free energy (BFE) calculations. The results of MD simulations suggest that the RBDs of all the Omicron subvariants (RBDOMIs) feature increased global structural fluctuations when compared with RBDWT. Detailed comparison of BFE components reveals that the enhanced electrostatic attractive interactions are the main determinant of the higher ACE2-binding affinity of RBDOMIs than RBDWT, while the weakened electrostatic attractive interactions determine RBD of BA.4/5 subvariant (RBDBA.4/5) lowest ACE2-binding affinity among all Omicron subvariants. The per-residue BFE decompositions and the hydrogen bond (HB) networks analyses indicate that the enhanced electrostatic attractive interactions are mainly through gain/loss of the positively/negatively charged residues, and the formation or destruction of the interfacial HBs and salt bridges can also largely affect the ACE2-binding affinity of RBD. It is worth pointing out that since Q493R plays the most important positive contribution in enhancing binding affinity, the absence of this mutation in RBDBA.4/5 results in a significantly weaker binding affinity to ACE2 than other Omicron subvariants. Our results provide insight into the role of electrostatic interactions in determining of the binding affinity of SARS-CoV-2 RBD to human ACE2.


Subject(s)
Angiotensin-Converting Enzyme 2 , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Humans , Angiotensin-Converting Enzyme 2/chemistry , COVID-19 , Mutation , Protein Binding , Static Electricity , Spike Glycoprotein, Coronavirus/chemistry
5.
Epidemiol Infect ; 150: e146, 2022 07 20.
Article in English | MEDLINE | ID: covidwho-1972491

ABSTRACT

Tuberculosis is a major public health issue in Yemen, a country located at the southwestern tip of the Arabian Peninsula, while the situation of tuberculosis had been further exacerbated since the war started in 2015. The objective of this study is to investigate the incidence of tuberculosis in Yemen before the outbreak of COVID-19, from 2006 to 2018. During the 13-year period, 92 482 patients were enrolled in the TB programme records from the 22 governorates. Almost equal number of cases were diagnosed between males and females (a male to female ratio, 1.03:1). A notable rising incidence was observed in all age groups starting from 2011. The sharpest increase occurred in children under age 15, rising by 8.0-fold from 0.5 in the period 2006-2010 to 4.1 in the period 2011-2018. Paediatric TB accounted for 9.6% of all reported cases. In terms of the patient residence, incidence has more than doubled in Sana'a city, Sana'a Gov., Hajjah and Saadah. Concomitant diseases with tuberculosis included diabetes mellitus (14.0%), brucellosis (6.1%), hepatitis (6.0%), rheumatoid arthritis (4.3%), renal disorders (2.5%) and HIV infection (2.5%). Development of interventions to reduce tuberculosis incidence in children and concomitant communicable diseases is urgently needed.


Subject(s)
COVID-19 , HIV Infections , Tuberculosis , Adolescent , COVID-19/epidemiology , Child , Female , Humans , Male , Prevalence , Tuberculosis/diagnosis , Tuberculosis/epidemiology , Yemen/epidemiology
6.
PeerJ ; 10: e13419, 2022.
Article in English | MEDLINE | ID: covidwho-1912093

ABSTRACT

Background: The study aims to explore the mental health of the hotline callers during the COVID-19 pandemic in China. Methods: Callers (N = 10,490) from the Beijing Psychological Support Hotline from January 21st to June 30th in 2019 and 2020 were enrolled and divided into two groups (during (2020) and before (2019) COVID-19 pandemic). The severity of depressive symptoms, psychological distress, hopefulness, and suicidal ideation (SI) was assessed. Demographic characteristics and major concerns were also collected. Mann-Whitney U and chi-square test were used to compare the differences in mental health conditions and major concerns between two years and between different age groups. The multivariable logistic regression was used to explore whether mental health conditions were associated with pandemic and demographic factors. Results: Results from multivariable logistic regression analysis indicated that the change in suicidal ideation (OR = 1.52, 95% CI: 1.21-1.92) was significantly different across age groups. Callers during the pandemic reported a higher level of hopefulness (OR = 1.13, 95% CI [1.03-1.24]), a lower level of depressive symptoms (OR = 0.81, 95% CI [0.74-0.89]) and psychological distress (OR = 0.89, 95% CI [0.81-0.98]), and were less likely to report SI (OR = 0.69, 95% CI [0.61-0.77]) compared with callers before the pandemic. Conclusions: Compared with callers before the pandemic, hotline callers during the early stage of COVID-19 pandemic did not present significant mental health problems. Younger callers during the pandemic were more vulnerable for the presence of suicidal ideation. Hotline-based crisis interventions might provide specific psychological support to cope with troubles during the pandemic.

8.
BMC Genomics ; 23(1): 260, 2022 Apr 04.
Article in English | MEDLINE | ID: covidwho-1775310

ABSTRACT

BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused global disruption of human health and activity. Being able to trace the early outbreak of SARS-CoV-2 within a locality can inform public health measures and provide insights to contain or prevent viral transmission. Investigation of the transmission history requires efficient sequencing methods and analytic strategies, which can be generally useful in the study of viral outbreaks. METHODS: The County of Los Angeles (hereafter, LA County) sustained a large outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). To learn about the transmission history, we carried out surveillance viral genome sequencing to determine 142 viral genomes from unique patients seeking care at the University of California, Los Angeles (UCLA) Health System. 86 of these genomes were from samples collected before April 19, 2020. RESULTS: We found that the early outbreak in LA County, as in other international air travel hubs, was seeded by multiple introductions of strains from Asia and Europe. We identified a USA-specific strain, B.1.43, which was found predominantly in California and Washington State. While samples from LA County carried the ancestral B.1.43 genome, viral genomes from neighboring counties in California and from counties in Washington State carried additional mutations, suggesting a potential origin of B.1.43 in Southern California. We quantified the transmission rate of SARS-CoV-2 over time, and found evidence that the public health measures put in place in LA County to control the virus were effective at preventing transmission, but might have been undermined by the many introductions of SARS-CoV-2 into the region. CONCLUSION: Our work demonstrates that genome sequencing can be a powerful tool for investigating outbreaks and informing the public health response. Our results reinforce the critical need for the USA to have coordinated inter-state responses to the pandemic.


Subject(s)
COVID-19 , COVID-19/epidemiology , Disease Outbreaks , Genomics , Humans , Los Angeles/epidemiology , SARS-CoV-2/genetics
9.
Signal Transduct Target Ther ; 7(1): 112, 2022 04 02.
Article in English | MEDLINE | ID: covidwho-1773956

ABSTRACT

Critical coronavirus disease 2019 (COVID-19) is associated with high mortality and potential genetic factors have been reported to be involved in the development of critical COVID-19. We performed a genome-wide association study to identify the genetic factors responsible for developing critical COVID-19. 632 critical patients with COVID-19 and 3021 healthy controls from the Chinese population were recruited. First, we identified a genome-wide significant difference of IL-6 rs2069837 (p = 9.73 × 10-15, OR = 0.41) between 437 critical patients with COVID-19 and 2551 normal controls in the discovery cohort. When replicated these findings in a set of 195 patients with critical COVID-19 and 470 healthy controls, we detected significant association of rs2069837 with COVID-19 (p = 8.89 × 10-3, OR = 0.67). This variant surpassed the formal threshold for genome-wide significance (combined p = 4.64 × 10-16, OR = 0.49). Further analysis revealed that there was a significantly stronger expression of IL-6 in the serum from patients with critical COVID-19 than in that from patients with asymptomatic COVID-19. An in vitro assay showed that the A to G allele changes in rs2069837 within IL-6 obviously decreased the luciferase expression activity. When analyzing the effect of this variant on the IL-6 in the serum based on the rs2069837 genotype, we found that the A to G variation in rs2069837 decreased the expression of IL-6, especially in the male. Overall, we identified a genetic variant in IL-6 that protects against critical conditions with COVID-19 though decreasing IL-6 expression in the serum.


Subject(s)
COVID-19 , Interleukin-6/genetics , COVID-19/genetics , Genetic Predisposition to Disease/genetics , Genome-Wide Association Study , Humans , Male , Polymorphism, Single Nucleotide/genetics
10.
Clin Infect Dis ; 74(2): 271-277, 2022 01 29.
Article in English | MEDLINE | ID: covidwho-1662113

ABSTRACT

BACKGROUND: Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused one of the worst pandemics in recent history. Few reports have revealed that SARS-CoV-2 was spreading in the United States as early as the end of January. In this study, we aimed to determine if SARS-CoV-2 had been circulating in the Los Angeles (LA) area at a time when access to diagnostic testing for coronavirus disease 2019 (COVID-19) was severely limited. METHODS: We used a pooling strategy to look for SARS-CoV-2 in remnant respiratory samples submitted for regular respiratory pathogen testing from symptomatic patients from November 2019 to early March 2020. We then performed sequencing on the positive samples. RESULTS: We detected SARS-CoV-2 in 7 specimens from 6 patients, dating back to mid-January. The earliest positive patient, with a sample collected on January 13, 2020 had no relevant travel history but did have a sibling with similar symptoms. Sequencing of these SARS-CoV-2 genomes revealed that the virus was introduced into the LA area from both domestic and international sources as early as January. CONCLUSIONS: We present strong evidence of community spread of SARS-CoV-2 in the LA area well before widespread diagnostic testing was being performed in early 2020. These genomic data demonstrate that SARS-CoV-2 was being introduced into Los Angeles County from both international and domestic sources in January 2020.


Subject(s)
COVID-19 , SARS-CoV-2 , Diagnostic Techniques and Procedures , Humans , Los Angeles/epidemiology , Retrospective Studies
11.
J Med Virol ; 94(5): 1976-1982, 2022 05.
Article in English | MEDLINE | ID: covidwho-1589016

ABSTRACT

To investigate endogenous interference factors of the detection results of novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) IgM/IgG. Enzyme-linked immunosorbent assay (ELISA) was used to detect SARS-CoV-2 IgM/IgG in sera of 200 patients without COVID-19 infection, including rheumatoid factor (RF) positive group, antinuclear antibody (ANA) positive group, pregnant women group, and normal senior group, with 50 in each group and 100 normal controls. The level of SARS-CoV-2 IgG in pregnant women was significantly higher than that in the normal control group (p = 0.000), but there was no significant difference between other groups. The levels of SARS-CoV-2 IgM in the pregnant women group, normal senior group, ANA positive group, and RF positive group were significantly higher than that in the normal control group (p < 0.05), with significant higher false-positive rates in these groups (p = 0.036, p = 0.004, p = 0.000, vs. normal control group). Serum RF caused SARS-CoV-2 IgM false-positive in a concentration-dependent manner, especially when its concentration was higher than 110.25 IU/L, and the urea dissociation test can turn the false positive to negative. ANA, normal seniors, pregnant women, and RF can lead to false-positive reactivity of SARS-CoV-2 IgM and/or IgG detected using ELISA. These factors should be considered when SARS-CoV-2 IgM or IgG detection is positive, false positive samples caused by RF positive can be used for urea dissociation test.


Subject(s)
COVID-19 , SARS-CoV-2 , Antibodies, Viral , COVID-19/diagnosis , Enzyme-Linked Immunosorbent Assay/methods , Female , Humans , Immunoglobulin G , Immunoglobulin M , Pregnancy , Sensitivity and Specificity , Serologic Tests/methods
12.
BMC Psychiatry ; 21(1): 363, 2021 07 20.
Article in English | MEDLINE | ID: covidwho-1319460

ABSTRACT

BACKGROUND: The coronavirus disease 2019 (COVID-19) pandemic profoundly impacts on mental health, yet it is still unclear whether COVID-19 distress makes people more vulnerable to suicidal behavior. The present study aims to examine the association between COVID-19 related psychological distress and risk for suicide attempt, and moderators of this association, among hotline callers. METHODS: This case-control study was conducted at the largest psychological support hotline in China. Hotline callers who sought help for psychological distress and reported whether or not they attempted suicide in the last 2 weeks (recent suicide attempt) were analyzed. The primary predictor of recent suicide attempt was the presence or absence of COVID-19 related psychological distress. Demographic variables and common risk and protective factors for suicidal behavior were also studied. Callers with COVID-19 related distress (COVID-19 callers) and those without such distress (non-COVID-19 callers) were compared on these variables. Recent suicide attempt was regressed on COVID-19 related distress and the other variables, and significant interaction terms of aforementioned predictors by COVID-19 related distress, to identify variables that moderate the association of COVID-19 related distress and recent suicide attempt. RESULTS: Among 7337 included callers, there were 1252 COVID-19 callers (17.1%) and 6085 non-COVID-19 callers (82.9%). The COVID-19 callers were less likely to report recent suicide attempt (n = 73, 5.8%) than the non-COVID-19 callers (n = 498, 8.2%, P = 0.005). The COVID-19 callers were also less likely to have high scores on depressive symptoms (22.6% vs 26.3%, P < 0.001) and psychological distress (19.5% vs 27.3%, P < 0.001), and were more likely to have high hopefulness scores (46.5% vs 38.0%, P < 0.001). Tests of moderating effects showed that acute life events were associated with one-half lower risk (P = 0.021), and a trend that suicide attempt history was associated with two-thirds greater risk (P = 0.063) for recent suicide attempt, among COVID-19 callers than non-COVID-19 callers. CONCLUSIONS: The COVID-19 calls are from individuals with lower suicide-related risk compared to more typical callers. Acute stressful life events provided a key context for suicide attempt in non-COVID-19 callers, i.e., more typical calls.


Subject(s)
COVID-19 , Psychological Distress , Case-Control Studies , China/epidemiology , Hotlines , Humans , SARS-CoV-2 , Suicide, Attempted
13.
Nat Biomed Eng ; 5(7): 657-665, 2021 07.
Article in English | MEDLINE | ID: covidwho-1294469

ABSTRACT

Frequent and widespread testing of members of the population who are asymptomatic for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is essential for the mitigation of the transmission of the virus. Despite the recent increases in testing capacity, tests based on quantitative polymerase chain reaction (qPCR) assays cannot be easily deployed at the scale required for population-wide screening. Here, we show that next-generation sequencing of pooled samples tagged with sample-specific molecular barcodes enables the testing of thousands of nasal or saliva samples for SARS-CoV-2 RNA in a single run without the need for RNA extraction. The assay, which we named SwabSeq, incorporates a synthetic RNA standard that facilitates end-point quantification and the calling of true negatives, and that reduces the requirements for automation, purification and sample-to-sample normalization. We used SwabSeq to perform 80,000 tests, with an analytical sensitivity and specificity comparable to or better than traditional qPCR tests, in less than two months with turnaround times of less than 24 h. SwabSeq could be rapidly adapted for the detection of other pathogens.


Subject(s)
RNA, Viral/genetics , SARS-CoV-2/pathogenicity , Saliva/virology , High-Throughput Nucleotide Sequencing , Humans , SARS-CoV-2/genetics , Sensitivity and Specificity
14.
Front Psychiatry ; 12: 555893, 2021.
Article in English | MEDLINE | ID: covidwho-1264387

ABSTRACT

Background: The coronavirus disease-2019 (COVID-19) pandemic has halted in-person medical education worldwide. Limited studies have reported on the mental health status of medical students during this public health emergency. This study aimed to explore the association of personal virus exposure, regional epidemic condition, and social support with medical students' depressive and anxiety symptoms during the COVID-19 outbreak in China. Methods: In February 2020, 5,982 medical students (60.0% females, Meanage = 21.7 years, Medianage = 22 years) completed an online survey consisting of demographics, personal virus exposure, the Patient Health Questionnaire, the Generalized Anxiety Disorder Scale, and the Social Support Rating Scale. Results: The prevalence rates of mild to severe depressive symptoms and anxiety symptoms were 35.2 and 22.8%, respectively. Multivariate linear regression showed that students with low- or medium-level social support had a higher risk of experiencing depressive or anxiety symptoms than those with high-level social support. COVID-19 exposure was positively associated with mild to severe depressive or anxiety symptoms. Respondents living in provinces with 500-1,000 confirmed COVID-19 cases had an increased risk of experiencing mild to severe depressive symptoms compared with those living in provinces with <100 cases. Other related factors were gender and years of training. Conclusions: Some medical students suffered from a poor psychological status during the COVID-19 outbreak. Low social support was a stronger factor related to poor mental status compared with COVID-19 exposure or the provincial epidemic condition. Thus, we suggest that colleges or universities provide social support and mental health screening.

15.
Fundamental Research ; 2021.
Article in English | ScienceDirect | ID: covidwho-1065086

ABSTRACT

The global pandemic of 2019 coronavirus disease (COVID-19) is a great assault to public health. Presymptomatic transmission cannot be controlled with measures designed for symptomatic persons, such as isolation. This study aimed to estimate the interval of the transmission generation (TG) and the presymptomatic period of COVID-19, and compare the fitting effects of TG and serial interval (SI) based on the SEIHR model incorporating the surveillance data of 3453 cases in 31 provinces. These data were allocated into three distributions and the value of AIC presented that the Weibull distribution fitted well. The mean of TG was 5.2 days (95% CI: 4.6-5.8). The mean of the presymptomatic period was 2.4 days (95% CI: 1.5-3.2). The dynamic model using TG as the generation time performed well. Eight provinces exhibited a basic reproduction number from 2.16 to 3.14. Measures should be taken to control presymptomatic transmission in the COVID-19 pandemic.

16.
Aging (Albany NY) ; 12(24): 24596-24603, 2020 12 23.
Article in English | MEDLINE | ID: covidwho-1000741

ABSTRACT

We conducted a retrospective analysis of the clinical characteristics and dynamic variations of immune indexes in nine COVID-19 patients in Zigong, China. We used flow cytometry and enzyme-linked immunosorbent assays to measure the absolute levels of CD4 and CD8 lymphocytes and SARS-CoV-2 antibodies, respectively. We found that CRP, LDH, HBDH, CD4/CD8 and IgE levels were increased in 6/9 patients, while PA and the absolute numbers of CD4 and CD8 lymphocytes decreased in 7/9 patients. From disease onset through 63 days of follow-up, SARS-CoV-2 IgG levels were consistently higher than those of SARS-CoV-2 IgM, reaching peaks on days 28 and 13, respectively. IgM levels decreased to normal 35 days after disease onset, while IgG levels remained elevated through day 63. IgE levels varied similarly to SARS-CoV-2 IgM. Our results suggest that SARS-CoV-2 may elicit allergic immune responses in patients and that the levels of CRP, PA, LDH, and HBDH, as well as the absolute numbers of CD4 and CD8 lymphocytes could be used as early diagnostic markers of SARS-CoV-2 infection. Lastly, the dynamic variation of SARS-CoV-2 antibodies could guide the timing of blood collection for plasma exchange.


Subject(s)
COVID-19/epidemiology , COVID-19/immunology , Host-Pathogen Interactions/immunology , SARS-CoV-2/immunology , Adult , Antibodies, Viral/immunology , Biomarkers , COVID-19/virology , Disease Susceptibility , Early Diagnosis , Female , Humans , Male , Middle Aged , Public Health Surveillance , Retrospective Studies , Young Adult
17.
Math Biosci Eng ; 17(4): 3052-3061, 2020 04 08.
Article in English | MEDLINE | ID: covidwho-806451

ABSTRACT

The novel coronavirus disease 2019 (COVID-19) infection broke out in December 2019 in Wuhan, and rapidly overspread 31 provinces in mainland China on 31 January 2020. In the face of the increasing number of daily confirmed infected cases, it has become a common concern and worthy of pondering when the infection will appear the turning points, what is the final size and when the infection would be ultimately controlled. Based on the current control measures, we proposed a dynamical transmission model with contact trace and quarantine and predicted the peak time and final size for daily confirmed infected cases by employing Markov Chain Monte Carlo algorithm. We estimate the basic reproductive number of COVID-19 is 5.78 (95%CI: 5.71-5.89). Under the current intervention before 31 January, the number of daily confirmed infected cases is expected to peak on around 11 February 2020 with the size of 4066 (95%CI: 3898-4472). The infection of COVID-19 might be controlled approximately after 18 May 2020. Reducing contact and increasing trace about the risk population are likely to be the present effective measures.


Subject(s)
Betacoronavirus , Coronavirus Infections/epidemiology , Models, Biological , Pandemics/statistics & numerical data , Pneumonia, Viral/epidemiology , Algorithms , Basic Reproduction Number/statistics & numerical data , COVID-19 , China/epidemiology , Computer Simulation , Contact Tracing/statistics & numerical data , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Epidemics/prevention & control , Epidemics/statistics & numerical data , Geographic Mapping , Humans , Markov Chains , Mathematical Concepts , Monte Carlo Method , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Quarantine/statistics & numerical data , SARS-CoV-2
18.
Transbound Emerg Dis ; 67(6): 2818-2822, 2020 Nov.
Article in English | MEDLINE | ID: covidwho-378330

ABSTRACT

The novel coronavirus disease (COVID-19) poses a serious threat to global public health and economics. Serial interval (SI), time between the onset of symptoms of a primary case and a secondary case, is a key epidemiological parameter. We estimated SI of COVID-19 in Shenzhen, China based on 27 records of transmission chains. We adopted three parametric models: Weibull, lognormal and gamma distributions, and an interval-censored likelihood framework. The three models were compared using the corrected Akaike information criterion (AICc). We also fitted the epidemic curve of COVID-19 to the logistic growth model to estimate the reproduction number. Using a Weibull distribution, we estimated the mean SI to be 5.9 days (95% CI: 3.9-9.6) with a standard deviation (SD) of 4.8 days (95% CI: 3.1-10.1). Using a logistic growth model, we estimated the basic reproduction number in Shenzhen to be 2.6 (95% CI: 2.4-2.8). The SI of COVID-19 is relatively shorter than that of SARS and MERS, the other two betacoronavirus diseases, which suggests the iteration of the transmission may be rapid. Thus, it is crucial to isolate close contacts promptly to effectively control the spread of COVID-19.


Subject(s)
Basic Reproduction Number , COVID-19/epidemiology , Epidemiological Monitoring , Population Surveillance , SARS-CoV-2/physiology , Adolescent , Adult , Aged , Child , Child, Preschool , China/epidemiology , Female , Humans , Male , Middle Aged , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL